Artificial Neural Nets (ANNs) (Similar to human brain):

are networks of artificial neuron nodes, each of which computes a simple function. It classifies images in analogous to neural nerves.

Components of ANNS:

input layer, an output layer, and "hidden" layers of nodes.

Neural Netw Use cases (Applications):

Pattern Recognition

Time Series Predictions

Signal Processing

Anomaly Detection

Neural Networks attempt to solve problems that would normally be easy for humans but hard for computers

The perceptron:

Simplest Neural network possible. It consists of one or more inputs, a processor, and a single output. It follows the "feed-forward" model

Types of Neural Networks:

(a) Feed-forward networks: mainly used in the areas such as prediction and pattern

recognition. It uses using a classifying activation function usually Sigmoid, tanh, ReLU,

SoftMax.

(b) Feedback network: mainly used for associative memory and optimization calculation.

(c) Self-organization networks: mainly used for cluster analysis.

Training of Neural Networks:

Example for input calculations:

Input 0: x1 = 12 Weight 0: 0.5

Input 1: x2 = 4 Weight 1: -1

Input 0 * Weight 0 \Rightarrow 12 * 0.5 = 6

Input 1 * Weight 1 \Rightarrow 4 * -1 = -4

Convolutional Neural Nets (CNNs)

is a feed-forward network that can extract topological properties from an image. They can recognize patterns with extreme variability (such as handwritten characters).

Too low threshold \rightarrow too many detections \rightarrow low precision, high recall Too high threshold \rightarrow too few detections \rightarrow high precision, low recall